
MTH 304 Midterm Solutions

1. Let A be a set; (Xα, Tα)α∈J be an indexed family of topological spaces;
and let {fα}α∈J be the indexed family of functions fα : A→ Xα .

(a) Show that there is a unique coarsest topology T on A with respect
to which each fα is continuous.

(b) Show that the collection

S = {f−1
β (Uβ) | β ∈ J and Uβ ∈ Tβ}

forms a subbasis for T .

(c) Let f : A→
∏
α∈J

Xα be defined by

f(a) = (fα(a))α∈J .

Show that if U ∈ T , then f(U) is an open subset of f(A).

Solution. (a) & (b) Consider the collection

S = {f−1
β (Uβ) | β ∈ J and Uβ ∈ Tβ}.

Clearly, the union of elements in S equals A, and hence S forms a
subbasis for a topology T on X. By definition, each function fα : A→
Xα will be continuous under T .

Suppose that T ′ is another topology on A in which each fα is con-
tinuous. Then f−1

β (Uβ) ∈ T ′, for all β ∈ J and Uβ ∈ Tβ. Since T ′
is closed under arbitrary unions and finite intersections, we have that
T ⊂ T ′. Therefore, it follows that T is the unique coarsest topology
under which each fα is continuous.

(c) It suffices to consider the case when U is a basic open set (why?).
Any basic open set U ∈ T must be of the form

n⋂
k=1

f−1
βk

(Uβk) =
n⋂
k=1

(πβk ◦ f)−1(Uβk).

We claim that

f(U) =
n⋂
k=1

π−1
βk

(Uβk) ∩ f(A). (*)
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If x = (xα) ∈
⋂n
k=1 π

−1
βk

(Uβk) ∩ f(A), then we have

x ∈ π−1
βk

(Uβk), for 1 ≤ k ≤ n and x ∈ f(A). (**)

Since x ∈ f(A), there exists a ∈ A such that f(a) = x. To show that
x ∈ f(U), it suffices to show that

a ∈ f−1
βk

(Uβk), for 1 ≤ k ≤ n,

which is equivalent to showing that

fβk(a) ∈ Uβk , for 1 ≤ k ≤ n,

but this follows from (**), as fβk(a) = xβk . By reversing this argument,
we obtain (*). Finally, since ∩nk=1π

−1
βk

(Uβk) is a basic open set in the
product topology in

∏
α∈J Xα, we have that f(U) is an open subset of

f(A).

2. The subset

C = [0, 1] \
∞⋃
n=1

3n−1−1⋃
k=0

(
3k + 1

3n
,
3k + 2

3n

)
of [0, 1] is called the Cantor Set.

(a) Show that C is closed and bounded. (Note: This shows that C is
compact.)

(b) Show that C is totally disconnected

Solution. (a) First, note that

C =
∞⋂
n=1

Cn, where

Cn = Cn−1 −
∞⋃
k=1

(
3k + 1

3n
,
3k + 2

3n

)
.

Each Cn is closed, being a finite intersection of closed intervals. As
C is an infinite intersection of the closed setsCn, it is closed. The
boundedness of C follows from the fact that C ⊂ [0, 1].
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(b) This is a standard exercise from a first course in real analysis. Let
x, y be distinct points in C. Then there exists n ∈ N such that

1

3n−1
< |x− y|.

Since each Cn is a disjoint union of closed intervals of length 1
3n−1 , we

have that x, y ∈ Cn. Furthermore, x and y must be contained in two
of the distinct (and disjoint) closed intervals that make up Cn. If J be
the closed interval in Cn containing x, then

x ∈ C ∩ J and y ∈ C \ J,

and these are closed sets that separate C. Therefore, C is totally
disconnected (why?).

3. Consider the unit circle S1 centered at the origin. Let f : S1 → R be
a continuous map. Show that there exists a point x ∈ S1 such that
f(x) = f(−x). [Hint: Consider the map g(x) = f(x)− f(−x), and use
the connectedness of S1.]

Solution. As suggested, define a new function

g : S1 → R : x 7→ f(x)− f(−x).

Then g is a continuous map from a connected space into R. Moreover,
since g(−x) = −g(x), for all x ∈ S1, the Intermediate Value Theorem
would imply that there exists y ∈ S1 such that g(y) = 0 (why?). This
would imply that

f(y)− f(−y) = 0,

and the result follows.

4. A topological space G is called a topological group if G forms a group
under an operation · such that

(g, h) 7→ g · h, ∀g, h ∈ G

and
g 7→ g−1, ∀g ∈ G

are continuous maps. Let G be a topological group and let H be a
subgroup of G.
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(a) Show that the quotient map G→ G/H is an open map.

(b) Show that if H E G, then G/H is a topological group.

(c) Show that R/Z is a topological group. Describe this group.

Solution. (a) For a fixed g ∈ G, consider the φg : G→ G defined by

φg(h) = hg, ∀h ∈ G.

Since (φg)
−1 = φg−1 , it follows that φg is a bijection. Moreover, as

multiplication and inversion within the group G are continuous maps,
it follows that φg is a homeomorphism. Consequently, if U is an open
set in G, then

φg(U) = Ug = {ug |u ∈ U}

is also an open set of U . Now let q : G → G/H denote the quotient
map. Then we have

q(U) = UH =
⋃
g∈H

Ug,

which shows that q(U) is open.

(b) If H E G, then we know (from MTH 301) that G/H is a group.
Furthermore, G/H inherits a natural quotient topology from G, as it is
a collection of disjoint left cosets of H in G, more precisely, the quotient
topology on G/H is defined by

G/H = G/ ∼H , where x ∼H y ⇐⇒ xy−1 ∈ H, ∀x, y ∈ G.

It remains to show that the maps

(gH, g′H) 7→ gg′H and (∇)

gH 7→ g−1H

are continuous maps. We will fix the following notation for the remain-
ing part of this argument

g′
ϕg7−→ gg′ g′H

ϕ̄g7−→ gg′H

(g, g′)
µ7−→ gg′ (gH, g′H)

µ̄7−→ gg′H

g
ι7−→ g−1 gH

ῑ7−→ g−1H
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For establishing (∇), it suffices to show that the maps ϕ̄g for all g ∈ G,
and ῑ are continuous maps (why?). First, note that ϕg ∈ Aut(G) (from
MTH 301), and further using an argument analogous to (a), we can
conclude that φg is a self homeomorphism of G. In a similar manner,
we can also infer that ι is also a self homeomorphism of G. Using
these observations and the fact that q is an open map, we obtain the
following commutative diagrams

G
ϕg−−−→ Gyq q

y
G/H

ϕ̄g−−−→ G/H

G
µ−−−→ Gyq q

y
G/H

µ̄−−−→ G/H

From these diagrams, we can infer that (∇) holds true.

(c) Since (Z,+) E (R,+), it follows from (b) that R/Z is a topological
group. From class, we know that (why?)

R/Z ≈ [0, 1]/0 ∼ 1 ≈ S1.

5. Let X be the quotient space obtained from R × {0, 1} by identifying
(x, 0) with (x, 1) for every number x ∈ R with |x| > 1.

(a) Does X satisfy the T1 axiom?

(b) Is X Hausdorff?

Solution. (a) We claim that X is a T1 space. To show this, consider
points x and y be distinct points in X. If they differ in their first
coordinate, then they can be separated by open sets (using the Haus-
dorff property). If x and y are points of the form [r × 0] and [r × 1]
respectively with |r| < 1, then they can be separated by disjoint open
neighborhoods which are the images of the sets U × {0} and U × {1},
for some U ⊂ (1, 1). When {x, y} = {[1× 0], [1× 1]} then each of x, y
has a neighborhood, not containing the other (why?) Finally, a similar
argument holds true for the case when for {x, y} = {[1 × 0], [1 × 1]},
and our claim follows.

(b) We show that X cannot be Hausdorff, by proving that the points
[1×0] and [1×1] are cannot be separated by open sets. Every neighbor-
hood of [1×1] must contain a set whose preimage in R×{0, 1} contains
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an interval (1− ε, 1 + ε)×{1} around 1×1 (why?), and since it is satu-
rated, it must also contain (1, 1 + ε)×{1}. Neighborhoods of the point
[1 × 0] must also contain a similar set. Two such neighborhoods will
always have points in common (why?).

6. (Bonus) Let S2 be the unit two sphere in R3 centered at the origin.
Consider an equivalence relation ∼ on X = S2 × [0, 1] defined by

(x, i) ∼ (y, j) ⇐⇒ x = y, i = 0, and j = 1.

Show that X/ ∼ is a compact and connected 3-manifold that is imbed-
dable in R5.

Solution. For every point x ∈ S2, the set {x} × [0, 1] is a homeo-
morphic to [0, 1]. Since we know from class that [0, 1]/0 ∼ 1 ≈ S1, it
immediately follows that each for each x ∈ S1,

{x} × [0, 1]/(x, 0) ∼ (x, 1) ≈ S1.

Hence, we have that (why?)

X/ ∼ ≈ S2 × S1.

Since X/ ∼ is a product compact spaces, it is compact. Furthermore,
sinceX/ ∼ is continuous image (under the quotient map) of a connected
space X (why?), X/ ∼ will be connected.

Finally, since S1 embeds into R2 and S2 embeds into R3 (by identify-
ing them respectively with the unit spheres in R2 and R3 centered at
origin), we can see that X/ ∼ embeds into R5 (why?) In fact, smallest
positive integer n such that X/ ∼ is imbedable in Rn is 5 (why?).
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